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Thermal analysis

The Du Pont Model 900 differential thermal analyzer was used with the
standard DTA cell and the DSC ccli!? (this is actually 2 DTA cell: it has a quan-
titative potential not available in the standard cell and differs from the iatter in that
the thermocouple is not in direct contact with the sample). Glass beads were used as
reference material in the former. and an empty pan for the latter. Unless otherwise
indicated a gas flow of 100 ml min "' was maintained in the DSC cell, a static
atmosphere in the DTA cell, and a nominal heating ratc of 20°C min~ ! in both.

The sample yarn or fiber was wound closely and tightly around the chromel:
alumel thermocouple, so that when it was inserted in the glass melting point tube
in the DTA ccell, the sample space was well filled. This was not possible with the coarse
Saran monofilament, which was cut into short (2-3 mm) lengths which were tightly
packed into the tube to form a bundle into which the thermocouple was forced.

Material for the DSC cell was cut into 3 mm square specimens. or the varn
was cut into short (ca. 2 mm) Iengths,. and packed in the aluminium pans. The pan
lids were inverted to minimisc head space and (o pack the sample firmly to the base
of the pan to obtain good thermal contact. The normal pan lid does not allow significant
pressure build-up or pan distortion unless there is rapid gas evolution, since it does
not fit tightly unless crimped. However. in some cases perforated lids were used to
allow easier efflux of evolved products, and for these four 0.5 mm holes were pierced
through the normal lid.

A sample mass of 2—4 mg was used in the DSC cell and about 2 mg in the
standard cell, the instrument response was very similar in cither cell.

RESULTS AND DISCUSSION

The DTA curves for PVC powder. obtained under various conditions. arc
shown (Fig. 1) for the range 100—400°C. The dehydrochlorination of PVC is accom-
panied by a mass loss of the order of 60%, of the original weight. and the formation
of a carbonaccous foamed char which undergoes further rcaction. The factors,
particularly thermal resistance, determining the performance of idealised DTA and
DSC apparatus have been described'”. In the standard (Du Pont) DTA cell, the
sensing thermocoupie is in direct contact with the sample. and foaming decomposition
can cause fluctuating thermal contact. and hence an erratic and irreproducible DTA
curve. The changing baseline thus compounds the reported difficulty of interpretation
of NSC curves of decomposing fibers®. As a consequence the curves obtained in the
standard cell at temperatures beyond the initial major decomposition have limited
utility, and comparison between curves obtained on the standard and DSC cells
above the decomposition should be treated with care.

The DTA curve of PVC powder in the standard cell (Fig. 1, f) comprised a
small endothermic baseline shift at 250°C prior to a broad endotherm from 250-350°C,
peaking at 305°C, and an exothermic trend on further decomposition. The small
endothermic shift was not evident in curves obtained on the DSC cell and was
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Fig. 1. DTA curves of PVC powdcr, heating rate 20°C min-'. (a) = DSC cell. open pan. in air;
(b) = DSC cell, perforated lid, in air; (c) = DSC cell, perforated lid, in Nz; (d) = DSC cell, open
pan, in Na; (¢) = DSC cell, closed lid, in N=; (f) = DTA cell; (g) = DTA cell, contains sliver of
DSC pan. ‘

assumed to result from a sintering of the powder onto the thermocouple. The curve
obiained for the DSC cell, using a closed sample pan in nitrogen (Fig. 1, €) showed
a relatively small endothermic peak followed by a vigorous exotherm, before deforma-
tion of the pan caused an irregular trace. When the product gases were allowed to
diffuse from the pan, using either a perforated pan lid or no pan lid (Fig. 1, cand d,
respectively) the exothermicity of the reaction was much reduced. In an open pan
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in air (Fig. 1, a) reaction was apparent at a lower temperature than in nitrogen and
was exothermic from the start, while under conditions of limited access of air using a
perforated lid (Fig. I, b) an initial net endotherm was followed by a vigorous exo-
therm. Finally, when a sliver of DSC pan was included in the DTA sample tube with
the PVC, a vigorous exotherm followed the initial endothermic reaction (Fig. I, g).

Reaction in air in an open pan of either platinum or aluminium gave 2 DTA
curve which was qualitatively the same; under these conditions the DTA curve
(Fig. 1, a) obtained in an aluminium pan, therefore, represents a predominantly
oxidative decomposition. It seems probable that the corresponding curve in nitrogen
(Fig._ 1, d) represents predominant thermal decomposition. The standard DTA cell is
characterised by an unusually high degree of product retention’®, so that the decom-
position takes place in a self-generated atmosphere, and under these conditions is
more endothermic. The contrast between DTA curves (Fig. 1, f and g) in the presence
and absence of aluminium demonstrates the potential for interaction between sample,
or decomposition products, and the container, The initial exotherm in the closed pan
(Fig. 1, e) is belicved to be due to such an interaction with the pan; although other
explanations are possible, for it is known that the evolution of large volumes of gas
can cause irreproducible DTA traces'®, and deformation of the sample pan can
cause spurious DTA peaks.

The autocatalytic effect of evolved hydrogen chloride, and the modification of
the DTA curves of PVC by the presence of additives and plasticizers has been shown?.
Thus the curves shown in Fig. 1 are not necessarily representative of processed
material which may differ in both composition, and particle size (ease of diffusion-
of product from the matenal), nonetheless the same factors will be operative and the
DTA curve will be determined by procedural variables.

For Saran the differences between the DTA curves obtained in the two cells
were less abvious (Fig. 2). The melting was clearly shown in a broad endotherm
peaking at about 170°C, in good agreement with the reported value of 170-175°C
for the semi-crystalline vinylidine chloride/vinyl chloride copolymers!®. Curves
obtained in the DTA cell (Fig. 2, ¢ and d) showed an irregularity between 220-270°C,
the range over which Saran was observed to decompose with extensive gas evolution.
The decomposition was only slightly endothermic and was manifested in the DTA
curves by the variable thermal contact causing an irregular trace. I the DSC cell,
using a perforated lid in nitrogen, this decomposition was not detected, but vigorous
exothermic reaction was evident above 250°C (Fig. 2, b). This could be due to the
aluminium pan; although the presence of a sliver of aluminium with the sample in
the DTA cell resulted in an increased exotherm, the effect was evident at a higher

-temperature (Fig. 2, c). In the DSC cell the exothermic decomposition was evident
at slightly lower temperatures in air than it was in nitrogen (Fig. 2, a and b).

The DTA curves of the pblyblcnd Cordelan (Fig. 3), showed a broad endotherm

at 200~220°C. This endotherm was found to be insensitive to changes of heating rate
- (5-40°C min~!). As the disorientation of crystallites in poly(vinyl alcohol), and the
melting - point- of formallsed poly(vicyl alcohol) libr&sm commonly occur in this
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Fig 2. DTA curves of Saran monofilament, heating rate 20°C min-L. (a) == DSC cell, perforated
lid. in air; (b) - DSC cell, closed lid, in Ns; (C} = DTA cell, with sliver of DSC pan; (d) — DTA cell.

range'®, this endotherm in the DTA curve of Cordelan can be autributed to the
poly(vinyl alcohol) crystallinity. The subsequent decomposition of Cordelan can be
interpreted as either a multistage exothermic reaction, or, more probably, concurrent
endothermic and exothermic reactions, near 300°C. The DTA curves of the polyblend
had little, if any, resemblance to those of the component polymers except for the
PVA crystallite disorientation endotherm (Fig. 3, a, b and c). The degree of product
restraint affected the DTA curve (Fig. 3, ¢ and d); reaction occurred at a lower
temperture in a closed pan than in one with a perforated lid, and the relative balance
of the tv 0 reactions was changed. The curve obtained in the standard cell (Fig. 3, ¢)
was subs'antially different and gave clear separation of an endothermic and an
exothermi > reaction. Under oxidising conditions both reactions were suppressed in
favour of 1 more general exotherm (Fig. 3, f).

In contrast to the previous materials the modacrylic fibers, Kanekalon and
Teklan, gave DTA curves that were not sensitive to the different conditions in the
two cells. For Kanckalon (Fig. 4) there was no qualitative difference between curves
obtained in air or nitrogen in the DSC cell, or under product restraint in the DTA cell.
Teklan (Fig. 5), on the other hand, was slightly more scnsitive to oxidation and an
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Fig. 3. DTA curves of Cordefan; heating rate 20°C min-t. (a) -~ Cordelan/polyethyiene tereph-
thalate, DSC cell, perforated lid, in N2; (b) = Polyester, DSC cell, perforated hid, in Ns; (¢) ~
Cordelan, DSC cell, perforated lid, in Na»; (d) == Cordelan, DSCcell, closed lid, in Ns; () -~ Cordelan,
DTA cell; () = Cordelan, DSC ccll, perforated lid, in air.

endotherm was suppressed in the DTA curve under conditions of reasonable air
access.

The DTA curves of both modacrylics were characterised by small meliing
endotherms at 190-200°C, which were insensitive to change of heating rate (5~-40°C
min~ ). After melting of the semicrystalline region each fibre underwent endothermic
decomposition, peaking near 250°C (Teklan) and 290°C (Kanckalon), and then 2
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Fig. 4. DTA curves of Kanekalon, heating rate, 20°C min-L. (a) = DTA cell; (b) = DSC cell,
perforated lid, in Nz; (¢) = DSC cell, perforated lid, in air.

vigorous exotherm, peaking at 280-290°C and 295-300°C, respectively. The endo-
thermic decompositions thus bear a superficial resemblance to the decomposition of
Saran and PVC, respectively, while the exotherms are similar to those of acrylonitrile
homopolymer?! and acrylic fibers*, and, in contrast to a previous report®, under
these conditions the DTA curves of the modacrylics are not dominated by a resemblance
to the chlorohomopolymer. The reactions are dependent on heating rate and the
balance of exotherm and endotherm can be substantially altered by suitable choice
of rate*; this may be utilised in identification.

Thc DTA curve of the Teklan/Celon fabric obtained at "0°C min~! in the
DSC cell (Fig. 6, a) differed from those of the component fibers (Fig. 5, c; Fig. 6, d);
the 250°C endotherm was not evident. The curve obtained in the DTA cell (Fig. 6,¢c)
at 20°C min~ ! was reasonably additive, although some Jowering of the Celon melting

* A fiber identified onlyaszchlonneconlammgmoda&yhcwasfound(DSCcdldo‘scd‘mﬁ) to
have m.p. 210°C, and an exothermic pcak at 300°C, at a heating rate of 20°C min-*; at 100°C min-1,
there was an additional endotherm peaking at 3!0'C,zndtbccxotbctmncp&khadshnﬂedto340°c.
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Fig. 5. DTA curves of Tcklan; heating rate 20°C min-1. (@) = DSC cell; perforated lid in air;
(b) = DSC cell; closed lid, in air; (c) = DSC cell; perforated lid, in N-: (d) = DTA cell.

was evident. At higher heating rates the characteristics of both fibers are agam shown
in curves obtained in the DSC cell (Fig. 6, b).

In contrast to those of the Teklan/Celon fabric, the DTA curves of the Teklan/

cotton blend showed no qualitative difference from those of Teklan alone, except
for a dehydration endotherm near 100°C. Cotton presents a relatively uneventful
thermogram in this temperature range (150-350°C) on this equipment.
, The Cordelan/poly(ethylene terephthalate) (PET) fabric gave a DTA curve in
the DSC cell (Fig. 3, a) which showed the melting of the PET (Fig. 3, b) as well as
that of Cordclan, and although the reaction exotherm of the Cordelan was slightly
modified by the presence of the other fiber, it remained dxstmctwe.
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Fig. 6. DTA curves of Teklan/Celon. (a) = DSC cell, perforated lid, in Nz, 20°C min-?; (b) = DSC
cell, perforated lid, in Nz, 100°C min-?*; (c) = DTA cli, 20°C min-; (d) == Celon, DSC cell,
perforated Iid, in N=, 20°C min-L.

CONXCLUSIONS

There is a continual need for an awareness of the procedural nature of DTA
and DSC results. The foregoing can be explained in terms of cell geometry and
construction affecting the interaction of sample, product and container.

During decomposition reactions there are major changes in the mass, size,
shape, heat capacity and thermal transfer properties of the sample, which result in
changes in the baseline of DTA and DSC curves'”. This complicates interpretation
of the curves over extended decomposition and temperature ranges and between
different instruments. The present work has shown differences between the Du Pont
DSC and DTA cells. Bingham and Hill3, in studies which included some chlorofibers
and modacrylics under somewhat similar conditions (the extent of diffusion through
their perforated sample pan lids cannot be assessed, since no detail is given, but it
seems probable that there is an effective self-generated atmosphere) obtained curves
which show significant differences to the present results, in terms of apparent general
exothermicity. ’

In the present case, it has not proved practncal to mvcsngatc the mtcract!ons ,
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of chlorofibers and the procedural variables pertaining to the DSC cell in greate:
detail since even the presence of a purge gas (100 ml min~ *) was insufficient to protect
the cell from corrosion by gaseous products®. For this reason, even though the DSC
cell is more convenient to use for fiber and fabric samples and gives improved thermo-
analytical performance, the standard DTA cell (in the Du Pont system) is preferred
for routine identification of unknown fibers by “fingerprint” thermograms.

In either case, it should be recognised that the cell itself can contribute sub-
stantially to the shape of the DTA curve obtained; in the case of the standard cell by
retention of volatile products in the proximity of the sample, and in the case of the
DSC cell by further interaction of the sample or products with the aluminium pan.
Great caution is therefore required when measures of thermal/chemical stability are
compared to other properties of interest such as strength retention or flame resistance.

The various fibers containing chlorine have characteristic DTA curves, which
are in some cases sensitive to procedural variables. There can be no confidence that
the DTA curves of any particular blend, mixture or alloy of two or more components
will be additive in respect of decomposition, although greater reliance can be placed
on first order transitions.
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ABSTRACT

A thermodynamic study of the liquid—solid phase transformations in porous
materials provides the relationships between the size of the poresin which solidification
takes place and the temperature of the triple point of the divided liquid, on the one
hand, and between this temperature and the apparent solidification energy on the
other hand.

The experimental study of the phase transformations, carried out by means of a
microcalorimeter, gives the values of the parameters necessary to calculate the free

solid-liquid interphase extension energy 7, at different temperatures. A formula
71, = f(T) is given for water and benzene. Once this factor is known, it is possible
to study the numerical relationship between pore-radius and freezing energy at the
equilibrium temperature.

By using these relations together with the solidification thermogram (the
recording of the power evolved by the solidification of a capillary condensate during
a lincar decrease of temperature) the authors have been able to determine pore
distribution curves. An emphasis is put on the comparison between this method,
thermoporometry, and the B_J.H. method.

Last of all the comparison of the experimental data for solidification and
melting provide information concerning pore shape by means of the evaluation of a
thermodynamic shape factor or by a method of simulation of porous material.

INTRODUCTION

~ The important role played by porous materials in industries dealing with oil,
chemicals, paper-production, textiles, building, leather, ... etc. has promoted the
research and the application of a number of techniques aimed at studying porosity.
Dullien and Batra' have recently made a thorough and critical review of them. Thcse
techmqus can be classed as: :

(a) Direct observatnon methods using electromc mlcroscop&s and the dlﬁractlon
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of X rays. Unfortunatcly, those techniques which make it possible to observe the
structure of the material directly prove to be difficult to handle when it comes to
examining mesoporous materials whose mean pore-radius ranges from 2 to 50 nm.

(b) Indirect methods based on the analysis of capillary phenomena occurring
in porous materials. The most frequently used of these methods are mercury porosi-
metry for the larger pores and the B.J.H. method for the narrower ones. The latter
deduces the characteristics of the porous material from the conditions of the liquid —»
gas transformation of a condensate held inside the material. Thus, it provides in-
formation about the size of the mouths of the pores.

The authors of this paper have recently presented a new technique of indirect
study: thermoporometry, which analyses the conditions of the solid-liquid phase
transformation of a condensate held inside the porous materials?- 3.

This method is based on the observation, mentioned by several authors®~
that the conditions of equilibrium of the solid, liquid and gaseous phases of a pure
substance which is highly dispersed are determined by the curvature of the interfaces.
In the case of a liquid contained in a porous material the solid-liquid interface
curvature depends closely on the size of the pore. The solidification temperature is
tkerefore different in each pore of the material.

The solidification thermogram of a known condensate inside an unknown
material thus leads to the deduction of: the size of the pores by means of the mcasure-
ment of the solidification temperature, and the volume of these pores through the
measurecment of the energy involved in the phase transformation.

This method actually aives the real size of the pores and not that of their necks.

Until recently the method had only been used as a relative method using
calibration curves drawn from well-known samples. It scemed to us worthwhile
to tumn it into an absolute method. enabling us to deduce the pore-size distribution
from the solidification thermogram purely by means of theorctical relationships.

Besides, in 2 number of applications where porous materials are used as filtering
elements, it seemed worthwhile to know the shape of the pores—a key component
of their permeability.

Thermoporometry makes it possible, by comparing the melting and solidifica-
tion thermograms, to deduce the shape of the pores and to present a model of material
made up of cylindrical and spherical pores.

6

2. STUDY OF PORE-SIZE DISTRIRUTION
2.1. Principle of the method: Solidification of a liquid in a porous material

2.1.1. Relationship between the temperature of the triple point of a condensate
and the radius of the pore

2.1.1.1. Solification temperature aof a highly dispersed liquid. For a pure non-
divided material the conditions of equilibrium of the three phases only coexist at the
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T, triple point. There is only one such point. In the case of divided phases there is no
longer just onc point: the cquilibrium pressure and temperature of the three phases
are determined by the curvature of the menisci. The phase rule cstablished by Defay
then gives a variance of 2.

Indeed in a finely divided substance the surface cnergy can no longer be ignored.
According to Gibbs' model we then have to admit that two phases i and j. whosc
volumes are V; and V;, arc separated by a surface layer. the interphase ij. whose
surface is A;; 2nd whose thickness can be ignored. The Gibbs-Duhem equations then
are:

S;dT — V,dP; + m;du; =9 for the phases
(1)

S;; AT + A dy;; + m,jdy;; = 0 for the interphases

where T 1s the temperature. m the mass. .S the entropy. u the chemical potential and

where the pressures P; and P; are related to the frec surface extension energies 7,
according to Laplace’s equations:

&)

At the triple point the three phases of a pure substance arc in equilibrinm with
their three interphases, so that the six chemical potentials are equal.

o= gy s, = . and
(3)

di; = dp; = dpg; = dyg, = ...
By subtracting two by two the Gibbs-Duhem equations as applied respectively

to the 1 (liquid). s (solid) and g (gaseous) phases. and by taking into account (2) and (3)
we obtain

Se =S5 Si— S5\ . Y% Lod4, ry L dAG)
(= i )= O R S )
where s and » stand for the specific entropy and volume of the substance.

This differential cquation of the triple point tcmperature shows indeed that the
temperature depends on the curvature of 2 interphases. It is obvious that two similar
cquations could be obtained by simply permuting systematically the s, 1, 2 subscripts
and that the three equations together will have covered all the possible combinations
of interphases.

2.1.1.2. Relationship between the triple point remperature of a condensate which
saturates a porous material and pore-radius. It appears from the previous study that
in order to calculate the triple point temperature it is necessary and sufficient to know
the dA;;/dV; curvature of two of the three interphases. This condition can usually
not be met for a porous material but it is possible to study the particular case where
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the solid-gas interphase is plane. For this 2 quantity of condensate whose volume is
slightly superior to that of the pores can be used. Below the normal T, triple point
the excess solidifies and the interphase thus obtained remains flat at any temperature
inferior to Ty The dA, /dV, curvature then is always zero. Aso, » p,andas s, — s, =
A4S, is the solidification entropy of the condensate, eqn (4) becomes:

AS[ aT + v.d (yk dAd ) =0 (5)
dy
This equation therefore shows a unique correspondence between the triple
point temperature and the curvature of the solid-liquid interphase. In order to relate
the temperature to the pore size, it is then necessary to know to what extent the
curvature is related to the pore-radius and, for that purpose, to study the solidification
process of a liquid which is divided by a porous material.

(a) Solidification process by nucleation

In a homogeneous liquid, solidification occurs from critical nuclei. One should
remember that embryos appear spontancously in the liquid but that they cannot
grow unless they reach a minimum size called critical size, whose value decreases
with the temperature of the environment. In a porous material the embryo is not
free to reach its critical size at any temperature as its mean radius will at most be
equal to the radius of the cavity inside which it is. At the normal solidification
temperature, the embryos therefore cannot reach the critical size in the pores. When
the temperature of the saturated sample is Jowered, solidification can occur pro-
gressively in the smaller pores (according to their size) when the size of the critical
nuclei (at a given temperature) is the same as that of the pore.

(b) Solidification process by evaporation followed by sublimation

Some authors?- ® claim that solidification occurs through evaporation of the
liquid followed by a condensation into solid state, both outside the porous matcerial
and inside the larger pores. Such a process can be understood in the case of a steep
thermal gradient but is inconccivable when .the phases are in equilibrium. Indeed
it can be shown, with the help of eqn (5), that solidification would follow that process
at a temperature inferior to nucleation temperature, the freczing temperature depres-
sions® being in the ratio y,./y;,-

Consequently such a process could only occur in the case of a strong thermo-
dynamic imbalance, due for instance to a strong supercooling or to a temperature
gradient. Last of all, when the porous material is thoroughly saturated, it must be
admitted that the vapour phase does not exist in it, which prevents the process from
OCCUITIng.

(c) Solidification process by progressive penetration of the solid phase
Everctt submits another process consisting of a progressive penetration of the
solid phase formed outside the porous material into the smailer, then the smallest
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Fig. 1. Phase diagram.

pores’®. That process which occurs at the same temperature for each size of the
pores as nuclcation most probably occurs jointly with the latter. But it cznnot account
by itself for the solidification which can be observed in an unsaturated material in
which only the smaller pores are filled with condensate; neither does it apply to a
material with ink-bottle shaped pores.

On noting that supercooling is unlikely for a highly divided fluid (as is the case
in a porous material) it becomes possible to opt for the first-mentioned process. The
curvature radius of the nucleus, i.e., of the solid-liguid interphase, equals then ithe
R, radius of the pore under study. Actually, as will be shown later in this paper, the
molecules which are in close contact with the wall are not affected by the change of
state. Thus the curvature radius of the solid-liquid interphase is R,, the pore radius
minus the thickness 7 of the layer of the molecules which are not affected by the
solidification. Assuming the shape of the interphase to be that of a spherical cap, its
curvature has the value:

dd, _ 2
dv, = R,

By substituting this value into eqn (5) we obtain
T

1 1 [ 4s,
R..“zv.,f 5 9T ©
me J | |
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This equation makes.it possible for each temperature 7 to determine the radius
of the pores inside which the condensate solidifies.

2.1.2. Solidification entropy of a capillary condensate

2.1.2.1. Solidificaiion entropy of a divided substance. On the diagram of the
phases equilibrium (Fig. 1), it is possible to find a transformation similar to the
solidification of a djvided liquid and thus to evaluate in a simple way the variation
of any state function, in particular entropy, when the above—mcntioned solidification
OCCcurs.

In the case under study the solid-gas mtcrphase is planc and the triple point
moves along the normal solid-gas equilibrium curve. At a T temperature the triple
point is in B and the solidification entropy 45, is then equal to the normal solidifica-
tion entropy A4S, plus the entsopy variation of the solid along the line ACB and also
the entropy variation of the liquid along the equivalent line, but taken inversely, with
respect to supercooled liquid phase. For that evaluation it must be noticed that the
pressure P, of the liquid phase in B is different from the pressure of the solid and
gaseous phases P,.

When c is the specific heat capacity at constant pressure and 4 the compression
heat,

AS,-_AS,,+I dP+f

Assuming the condensed phases to be mcomprcss:ble and noting that

7=~ (35),
AS; = 4S;, + ;[ c'dT-i- [(Z‘;)P - ( ;‘;. )P]T(P, —P)
(&) o o

where P, is the vapour pressure of the undivided solid at tcmperature T. Tts value is
given by Clapeyron’s equation and P, — P, is given by Laplace’s equation.

re
Po—p =20 f":'dr ®
)

2.1.2.2. Effect produced on the entropy of superficial phases by the. &hange of
state. Along with solidification there occurs a change of interphase between the layers -
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which do not freeze and the adjacent phase (liquid before solidification, solid after-
wards). The additional entropy variation thus obtained can be evaluated by using
the equations of Gibbs-Duhem (1) as applied to each of the interphases, the equality
of chemical potentials (3) and Young’s formula dealing with the equilibrium of the
three interphases?:

~ 2o dn
R, dT

(4S)),., # (9

2.1.2.3. Solidification energy af a capillary condensare. The solidification entropy
of a capillary condensate is therefore given by adding (45,),,, t0 A4S, and then the
theoretical solidification energy is

W = T{4S; + (4S9, (10)
’ — d7ls AT ] '
'Of ¥ h TAS; [l dT*-;;l':‘ (ll)

However, as was mentioned above a fayer with thickness t is not affected by
the state change, so that in a pore with a ¥, volume only the volume ¥ solidifies and
the apparent energy of the state change in the pore under study (the only thing that
~ can be measured) is

. V5
W, = Wy, -2 (12)

Yo

At apy temperature the knowledge of the energy evolved makes it possible to
determine V. ‘

2.2. Numerical evaluation of the various parameters

In order to be applied, the previous equations require the evaluation of several
parameters whose numerical values do not appear in the lLiterature as the liquids
are usually supercooled in the case under study. It is therefore necessary to determine
those values for the 2 condensates used in this investigation, water and benzene.

2.2_1. Solidification energy of the divided liquid
The literal formula of this energy is provided by eqn (7).

{a) In the case of water
By adopting the following values'!- !? where 0 is the temperature in °C.

e, =2114(1 + 373.70-10"%)J g™}

e, =4222(1 — 54- 10-5 0Hyeg™*



(-a-‘-"-) = —9.11- 105 (1 - 02.70)cm3 = o
5 ,

T

o, - IS5 3 ~1",-—l
(&T),”lm I07°cm g™ " K
A4S = — 1.2273g " K™

P, = 458 mm Hg
r, = 1.000132(1 — 9.10- 10720 + 1.035- 107%* 0*)cm> g~ !

eqn (7) becomes

4SO g K™% = — 12227 — [4.889 Lo — 10.18- 107> a]
o o g

A B

aT

+9.11-107%(1 — 0.22760) f Af‘
. : I

— —— SR—

C

In this formula term A represents the normal entropy, term B the entropy
variation due to the lowering of the transformation temperature, term C the one due
to the liquid—solid interphase curvature. The influence of the solid pressure is negligible

here.

Term C is only a correcting term. Thercfore, an approximation can be made

which enables it to be integrated as follows:

f 45 a1 = —-JAS,dT__ 5 @S + 450 (T~ T)
whence
AS(Fg ' K™Y = — 1.2227 — 4.889 Ln—;- + 10.18-107%0

+ 4.556 - 107% (0 — 0.227 0*) (4S, + 4S.)

450 g K™Y =

- 1.2.7- 4.889 Ln (1 + 6/T)) + 10.126 - 1073 0 + 1.256 - 10’501

1 — 4.556-107° (0 — 0.227 6%)

a3
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Fig. 2. Solidification energy of divided water and benzene (curves a). Apparent solidification energy ‘
{curves b) and apparent fusion energy (curves ) in porous matenals.

With this equation, it is possible to determine the solidification energy of a
divided liquid which is in equilibrium with the bulk solid, when the division does not
take place in a2 porous matenal:

Its variation is shown in Fig_ 2. It can be seen that at — 30°C the solidification
energy decreases by 108 J g™ %, i.e., 33 9. The lowering of the transformation tempera-
ture has produced a variation of 72 J g™, and the lowering of the liquid pressure is
responsible for a decrease of 36 J g~ '. There is no positive influence attributable
to the lowering of solid and gaseous phase pressures. o
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The proposed formula is thus more precise than the one which is generally
used, as the latter only takes into account the correcting term dealing with the
temperature variation'3.

(b) In the case of benzene
By adopting the following values, which are valid in the area near the triple

point

AS;,= — 0456871 g~ *K™' (ref. 11) To=278.7K

5y, = L1108 (1 + 1.184- 1073 0) cm? g~ ' according to Hu and Parsons'*
¢, = 160-+950-10"280 + 3.75- 10~ % 02 according to Touloukian'*

g =165+ 2687-10"30 + 4.687-10"% 0> according to Touloukian!®

eqn (7) becomes with AT =7 — T,

A4S g " K™Y = — 0.4568

i
A
- ( aT -5 ;2 2 -3
+ [0.5373 Ln(l + ) + 1.641-1075(T2 — T2) — 1111 - 10 AT]
B
r.
~1315-107% | A4t
- vl
=
C

Terms A, B, C here represent the same varniations as in the case of water. For
the same reasons term C can be simplified, whence

AS(Jg ' K™ Y) = — 045687 — 11.11 - 1073 AT + 1.641 - 1073 (T2 — T?)
- 4T ~3
+ 0.5373 Ln (1 + -—---) — 0.592- 1073 (4S, + 4S.) AT
278.7
45(Jg 'K ) =
-3 -5 g2 2 aTt
~ 045687 — 10.84- 107> 4T + 1.641 - 107°(T* — T3) + 05373 L ( { + -
14 0592-10724T
' (19

The solidification energy determined by means of this formula is shown in
- Fig. 2. ' o - : ‘
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2.2.2. Free extension energy of the liquid-solid interphase

222 . Values found in the literature. Several attempts have been made to
measure the free extension energy of the liquid-solid interphases 7,.. Most have
proceeded by determining the limit temperatures of homogeneous nucleation and
lead to rather erratic values. For water
7. =23.8- 10731 <+ 4.29- 1072 0] N m™ ! according to Dufour and Defay'®
71 =30.5-1073[1 - 9.3- 1073 0] N m™ ! according to Hesstvedt’”?

As for Skapski'®8, he developed a procedure based on the relationship between
the curvature of a solid held in a conical capillary and the temperature of its triple
point, which leads to
Ve = (44.5 + 10) - 10”2 N m™* for water and
7 = (21 = 7)- 1073 N m™~ ! for benzene

The discrepancies thus observed can be accounted for either by the unpre-
dictability of supercooling, or by the approximations necessarily made when choosing
a model for the application of the theory of homogenecous nucleation. In particular,
no account is taken in this theory of the thickness of the transition layer between the
liquid and solid phases. Yet, it can reach 309, of the radius of the critical nucleii at
— 30°C. In the case of Skapski’s experiments such approximations are much more
acceptable as the thickness of the transition layer can be neglected as compared to
the cone radius.

2.2.2.2. Experiment and results. It is possible to determine the value of 7,
by applying eqn (6) to porous materials whose texture is known. By taking into
account the previously determined value of 4S5, this equation can indeed be integrated
and written as

%4—109- 10°*4T=0 (15)

with 0 > 4T > — 60 for benzene

10-3 [ s 2 Tis —
1.81-10 (Ru) + 1569 R, + 4T =0 (16)

with 0 > AT > — 40 for water

where y,, is given in Nm~! and R, in nm.

In order to determine 7., it is therefore sufficient to measure the freezing point
depression of condensates held in samples whose pore-radius R, is known.

Because eqns (15) and (16) require the use of R, radius of the critical nucleus,
it is necessary to determine the thickness 7 of the peripherical layer of the condensate
which does not undergo a change of state. This thickness cannot be evaluated in the
way Fagerlund!? does, by comparing it to that of the adsorbed layer observed in the
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_process of an isothermat adsorption analysis. It is possible, however, to determine the

thickness by measuring, in a calorimeter, the fraction of condensate which changes
state in the cooling process. Such a calculation previously conducted by the authors
of this paper® has enabled them to determine the number of molecular layers of
benzene which do not solidify as 3.5, i.e., 133 A and as 2.5, i.e, 8 A for water. This
result compares well with those obtained by Antoniou’? who found less than three
fayers for water and by Litvan?® who found two layers. We will therefore adopt a
value of 13.3 A for ¢ in the case of benzene and 8 A in the case of water, assuming
these values to be practically independent of the pore size.

A calorimeter was used to measure the lowering of freezing temperature on a
number of samples selected in view of the limited range of their pore-radii, made of
eight alumina porous plugs with different mean pore radii and of Vycor glass.
This last element makes it possible to prove that the nature of the material has
practically no influence on the measurement.

The curves showing the distribution of pore radii were plotted by using the
BJ.H. method and mercury porosimetry. The 47,, temperature depression given by
the peak of the thermogram corresponds to freezing in the pores for which
W, - R: AV[AR, is at its maximum?>; hence, in the case of a sample with a limited
range of pore radi, this temperature corresponds to the peak of the distribution curve.
The results are shown in Table 1 for water and Table 2 for benzene.

TABLE 1
¥ycor Al Al Al Alg Aly

101 R, (m) 24 32 34 50 25 105
101® Ry (m) 145 24 244 40.4 835 954
AT (K) 238 28 21 I5 7 7.1
107 71 (N m-7) 219 34 288 35 34.7 40
TABLE 2

‘ Yycor Aly Alz Als Alg Az Aly
102 B, (m) 24 32 31 50 55 99 135
10*° Ra (M) 11 19 23 37 42 86 12
AT (K) 62 57 38 315 27 13.2 10.5
107 71 (N mm-1) 14.2 26 17.7 244 23.7 233 . 268

- The values thus obtained for y, do seem to be slightly inconsistent at times
mainly because there was some uncertainty with respect to the pore size.
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Assuming 7,, to vary linearly with temperature, it is possible to determme the
equation of the regression line by using the method of feast squares

7 = (409 + 0.39 4T) 107> (17)

with0 > 4T > — 40 for water

w = (27.5 + 0.16 AT) 107> (18)

with 0 > AT > — 60 for benzene
where 7,, is givenin Nm™ .

For AT # 0 these equations give results in agreement with those given by
Skapski, an allowance being made for the margin of error which he predicted. It
can be noticed that in the — 30, — 40°C temperature range our valuc in the case of
water is slightly higher than the one found for the same temperatures by using
procedures based on the study of supercooling, probably for the reasons already
mentioned.

2.2.3. Numerical relation between pare radius and triple point temperature

On substituting the value of 7,, in egns (15) and (16), it is possible to obtain
the relationships between the freezing temperature depressions of a capillary con-
densate saturating a porous material and the radit R,. and to deduce from this the

variation curves AT = f(R,) (Fig. 3). These curves can be represented by the following
equations where R, is given in nm.

64.67
Ry = ——37

for water with0 > AT > — 40

+ 0.57 (19)

R, = — w«-'f:f + 0.5% (20)

for benzene with0 > AT > — 60

It will be observed that:

(1) If the sample is not saturated the solid-gas interphases are not plane and
according to eqn (4) the freezing point depression will be more marked than those
calculated according to eqns (19) and (20). :

- (2) The two equations above are only valid when the condensate sohdzﬁs. In

fact when fusion occurs in cylindrical pores the liquid-solid meniscus has a different
shape from that of 2 critical nucleus, as will be seen below.
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Fig. 3. Triple point temperaturc depression in porous materials at solidification (continuous lines)
and a: fusion (dashed lines).

2.2.4. Numerical relation between the apparent solidification energy of a capillary
condensate and the temperature of the rriple point

By substituting the values of dy,/d7 and of R, in eqn (9), it is possible to deter-
minc the entropy variation (4S,) due to the transformation of the interphase : liquid-
layers which do not undergo phase transformation into an interphase:solid-layers
which do noi undergo phase transformation.
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(4S8¢)sup, = — 0.78/R,, for water
(4S5)),., —= — 0.36/R,, for benzene
where (45)),,, isinJ g~ ' K™', R, in nm.
For water contained in pores in which solidification occurs at — 25°C. this
correcting term represents a 259 increase of [W ]
In capillaries of any length L, the apparent solidification cnergy is then

2 a2
w, = wi, "Rl Ry = 1]
nR; L R,

Numerically and within the temperature range 0 > T > — 40°C this relation
can be expressed by a quadratic equation

W,= —556-10"2 4T — 743 AT — 332 for watcr n
W, == — 887-1073AT* — 1.76 AT — 127 for benzene (22)

where W, is expressed in J g~ '. The variation curves of W, in terms of temperature
are shown in Fig. 2.

2.3. Calorimetric determination of a pore radius distribution

As Bakaev et al.?' and Antoniou'® had hinted, it is possible to draw the curve
of pore radius distribution of an unknown sample by analysing the solidification of a
condensate held in the sample during the cooling process. Such a process has already
been followed by the authors of this paper®*- * and Fagerlund®>. This is an account
of the procedure, using the results demonstrated above which deal with the relation-
ship between pore radius, triple point temperature and solidification energy.

2.3.1. Principles of the procedure

At any temperature, freezing occurs in the pores whose sizes arc given by eqns
(19) or (20). The volume of these pores can be determined, in terms of the apparent
solidification energy given by eqgns (21) or (22), by a calorimetric measurcment of the
energy evolved at that temperature. The distribution curve is therefore directly
deduced from the solidification thermogram.

2.3.2. Experimental procedure

To begin with, one to three grammes of the sample are degassed under vacuum,
then they are thoroughly saturated with condensate by means of an evaporator. Both
water and benzene are convenient here. However, in the case when a low porosity
sample is under study, water has the advantage of having a high apparent solidification
energy whereas in the case of samples with large pore radii benzene undergoes larger
decreases of the triple point temperature.
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Fig. 4. Thermoporometry of a porous plug formed by compression of two powders.

The sample is then sealed and put into a calorimeter of the isothermal type

built in the laboratory. The solidification thermogram is drawn during a linear

lowering of temperature. The cooling speed is low enough (1 to 6 K h™?) for the
three phases to remain in constant equilibrium and the temperature to be the same

throughout the sample.

The ordinate y of that thermogram corresponds to the deviation, expressed in
mm, of the recorder under the influence of the power evolved. The abscissa, which is
directly proportional to the time 71, is also directly proportional to the temperature

according to the equation:

AT= kl 4 + kz )
The thermogram y = f (47T) shows a first peak which is characterized by a
variant 47 (within the range of a few degrees) due to the supercooling of the excess
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of condensate. This peak does not appear in the figures here. Solidification inside the
pores produces the part of the thermogram similar to that shown in Fig 4, from which
the distribution curve 4VJ/AR, = f(R,) can be deduced.

During the time interval d¢, the energy which is evolved is proportional to the
area y d(47T). The volume dV of the pores in which the change of state then occurs
is directly proportional to the energy and inversely proportional to the apparent
energy W; it is expressed by:

dv = k, .%,_.d(An

The radius R, being related to temperature T by an equation of the type

__A._.+B

Ro =~ 57

its differential is

dR, =
(AT)
Therefore, the equation of the distribution curve is
4av (4AT)* o
AR = K—w Y 23

P 3

where k is a factor taking into account the sensitivity of the calorimeter and the
recorder, the rate of the temperature variation and of the recording as well as the
slope A of the curve R, = f (1/4T) and the mass of the sample under study.

This procedure has been satisfactorily applied to a large number of samples.
As an example the results of the analysis of a double distribution sample will be given
below.

2.3.3. Example of application

According to the theories which were tested to account for the change of state
inside porous materials, thermoporometry should give the actual size of the cavities
"~ and not that of the necks, as is the case for the B.J.H. method.

In order to test that theory the sample under study was made up by mixing
and compressing together 0.44 g of a powder A whose pores have a mean radius of
6 nm and 4.4 g of a powder B whose pores have a mean radius of 4 nm, the radii
being measured by the B.J.H. method.

The solidification thermogram of the benzene contained in that sample and the
distribution curve deduced from eqn (23), together with a distribution curve calculated
by means of the BJ.H. method are shown in Fig. 4. It will be noticed that:

(a) The peaks of powder B ncarly correspond, which substannats the pnnc:ple
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of thermoporometry and the different cquations required for its application.

(b) Thermoporometry brings to light a double distribution, already clearly
visible on the thermogram, whereas the B.J.H. method shows only the peak due to
the smaller pores. This supports the author’s hypothesis about the -solidification
process. Indeed, if the very small proportion of powder A is taken into account, it
can be assumed that it is brought in contact with the exterior only through the pores
of powder B. That is why in this case the B.J.H. method only provides accurate
information regarding the smaller pores which constitute the orifices of the mixture.

(c) The value of the radii thus obtained through thermoporometry in the case
of powder B is slightly superior to that given by the B.J.H. method. This seems to
point to the fact that the powder has orifices which are smaller than its cavities.

3. ANALYSIS OF THE PORE SHAPE

If information about the size of the pores is of capital importance to characterize
a porous material, the knowledge of their shape is also valuable. Although the
structure of most porous samples is a complex one, several authors have tried to
compare them with models which would be as simple as possible. Three models of
porous aggregates are usually suggested: an aggregate of cylindrical capillaries
packed in series and in parallel??, a porous material made up of tightly packed
spheres?* or a material with conical pores?3. A critical survey and classification of the
different models with which porous matenials can be compared have been made by
Kamaukhov?®. From now on the material used in this paper will be assumed to be
made up of both spherical and cylindrical pores.

3.1. Principle of the procedure
As was seen before, the solid phase in a pore only takes place from a spherical

nucleus whose curvature is equal to twice the inverse of the radius; the freezing
temperature depends on the radius according to the theoretical formula (6) and the
numerical formulas (19) and (20).

With respect to fusion, the process is more complicated: If the pore is spherical,
the curvature of the resulting solid condensate remains the same when fusion takes
place as it was when solidification took place, and the fusion and solidification
temperatures are the same. If the pore is cylindrical the spherical nucleus grows
spontaneously and adopts the shape of the pore; the curvature of the solid condensate
then becomes equal to the inverse of the radius. The relation bemeen the radius and
the tcmpcrature can be written as: o

pe= | SraT 29)
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Fig. 5. Simulation of 7-alumina by cylindrical pores materials.

If in the case of freezing, the relation between R, and the temperature depression

AT is simply written as
R, =f(4Ty)
when fusion takes place it will be

R, =3f(4T.)

(25)

(26)

The function f being the same in both cases.

These two equations bring to light the existence of a hysteresis between thc
freezing and fusion thermograms, when the pores are not strictly spherical..

The previous results point out that there is no ambiguity as far as the calculation
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Fig. 6. Simulation of y-alumina by spherical pores materials.

of the pore radius distribution curve, AV/AR, = f(R,), is concerned in view of the
freezing thermogram, whereas it would be necessary to know in advance the shape
of the pores in order to deduce a distribution from the fusion thermogram. The
Iatter then does not make it possible to obtain a distribution curve but it can still be
used to provide information as to the shape of the pores.

Indeed, on assuming the pores to be first cylindrical and then spherical, two
pore radius distribution curves can be drawn from this thermogram (Figs. 5 and 6),
one called “spherical”” (curve c) and the other “cylindrical” (curve b). The calculation
of these two types of distribution must be conducted as shown in 2.3.2. It must be
noticed, however, that if the relations between radius and temperature on the one
hand, the apparent change of state energy and the temperature on the other hand, arc
the same as during solidification for “spherical’” distribution, this is no longer the
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case for “cylindrical™ distribution. In this last case the equation linking the apparent
energy W, to the temperature of the triple point is peculiar to fusion. In fact, whereas
in the formula of W, the variation W,, due to AS; is a function of the temperature,
the term A4S, ., is a function of the radius R, whose rclationship with temperature
depends on the nature of the change of state—solidification or melting (eqn (6) or (24)).
This should also be taken into account when the apparent energy is calculated
according to eqn (12). Then the variation of W, with respect to temperature, for the
melting of a solid dispersed in a porous sample, shown in Fig. 2, appears as:

W, = — 0.1554T* — 11.39 4T — 332 for waler
W, = — 0.0273 AT? — 294 AT — 127.3  for benzene

(27)

where W, iscxpressed in J g~ .
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As was the case for solidification, thesc equations are only approximate, valid
within the limits of these experimental investigations

FO > 4T > — 25forwau:rand
0 >-dT>v ~— 30 for benzene.

Comparison between the hypothetical distribution curves (b) and (c) and the
distribution curves deduced from the solidification thermogram (curve 2a) pomts to
three possib:htus-

@) If (b) is strictly similar to (a), all the pores are cylindrical; the hysteresis
of the thesmograms (curves (f) and (g)) is then maximum (Fig. 5).

(i) If (¢) is similar to (a), all the pores are spherical and the solidification and
melting thermograms correspond exactly (Fig. 6).

(iif) Usually as the pores are neither strictly spherical nor strictly cylindrical,
curve (a) is situated between curves (b) and (¢) (Fig. 7).

In order to improve the accuracy of the information about the shape of the
pores provided by this kind of comparative study, two experimental procedures can
be recommended: determination of a shape-factor and development of a model
imitating the porous material.

3.2. Thenmodynamic shape factor

By using the melting thermogram the hypothetical distribution curve c is
drawn, assuming the pores to be spherical; for a given temperature the calculated
radius R_ is given by eqn (25). As was mentioned before two extreme cases have to be
considered: If the pores are actually spherical the ratio of radius R_ to the actual
radivus is one; and if the pores are cylindrical, radius R_ will be twice the actual radius,
R the ratio R_/R is 2. The ratio R /R which varies from 1 to 2 according to whether
the pores are spherical or cylindrical, can be considered as a shape factor.

The above study deals with the nucleus radius R,, and not with the pore radius

- Because distribution is related to pore radms, the previous deductions should be

altered as follows:

As has been noted before, the equations relating pore radius to temperature
in the case of spherical pores is of the type.

R, = "z-i-;- + B (28)
Then, when melting occurs, the relationship between AT and the radius of cylindrical
pores, obtained by taking into account equations 25 and 26, and the thickness t of
the layers which do not change state, becomes

A B+t
o= T3 29

or in numerical terms (Fig. 3)
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R, = — 331';_3 + 0.68 for water with0 > 4T > ~— 40
(30)
65.8 .
Rp = ~ 5T + 0.92 for benzene with 0 > AT > — 60

where R, is expressed in nm and 47 in K.

It can then be observed that if a hypothetical “spherical” distribution curve
is drawn, for cylindrical pores, the relationship between pore radius R, given by
eqn (28) and the real R, given by eqn (29) will be

R, R,

The shape factor R, /R, is therefore equal to 1 for spherical pores and to
2 ~ (t/R,) for cylindrical pores. In the case of pores that are neither cylindrical nor
spherical

Ry t
1 < R < 2~ ®,

P

It is worthwhile to alter the formula for the shape factor here so that the limit
values of the factor may be independent of the radius. A thermodynamic shape factor
is then defined by the formula

l-—-R"‘
1=

This is equal to 1 for spherical pcies and to 2 for cylindrical pores.

In practice, it was assumed that the porous material should be given the shape
factor calculated for the pore radius corresponding to a 507 rate of liquid = solid
transformation, measured from the cumulative volume curve

zAav, = f(R;)

3.3. Development of a model simulating porous material

Although the shape factor gives information simply and quickly as regards
the porous material texture, it is worthwhile to go on researching the subject and to
build a model similar to the porous material. This research was done by means of a
Hewlett-Packard 90-10 calculator. 7

The selected model is based on a porous structure made up of tightly packed
cylindrical and spherical pores, characterized by the two corresponding pore radii
distribution curves (Fig. 7, curves (d) and (¢)). The formula for these distribution
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curves was chosen to have a shape similar to the one obtained from experiments for
most mono-distributed samples. It can be written:

ay
4R,

and it leads to a distribution curve starting from the origin at one end and leading
to zero for the higher values of R at the other end. The existence of three parameters
makes it possible to choose the maximum coordinates and the width of the distribution
curve at 109 of its maximu- : amplitude.

Taking the “spherical”’ and “cylindrical” distributions as a starting point, the
following curves can be calculated:

(1) The overall distribution curve (a) made up of curves (d) and (¢).

(2) By means of the curve thus obtained, the solidification thermogram
(curve f) drawn by using eqn (6) (numerical expressions (19) or (20)) in order to
calculate A7 for a given radius, and eqn (23) to determine the ordinate y.

(3) The melting thermogram (curve (g)) for which a distinction should be made
between spherical and cylindrical pores. The way in which each of these two groups
of pores contribute to the amplitude of the thermogram at a given temperature is
obtained as follows:

— contribution of the spherical pores: the calculation is made by using the
spherical pore distribution curve (curve (€)) as was done before for the solidification
thermogram.

— contribution of the cylindrical pores: the same process as above is used, but
curve (d) must be used as distribution curve; eqgn (6) must be replaced by eqn (24)
{numerical formula (30)) and in eqn (23) the energy evolved during solidification must
be replaced by that evolved during melting (eqn (27)).

(4) The hypothetical “spherical” distribution curve (c) calculated from the
fusion thermogram as was shown in paragraph 3.1. It is to be noted that it is not
mecessary to link to it the “cylindrical” distribution curve as the two imagined
distribution curves are directly linked.

The different graphs obtained in this way are then compared to those obtained
from experiments. It may then be necessary to alter the selected distributions {which
were selected a priori) until the best possible agreement is obtained. Although a
perfect agreement is never reached, the procedure based on simulation provides more
complete information as regards texture than the one based on the shape factor. In
order to illustrate the procedure, Fig. 7 shows the results achieved by assuming the
structure of an y-alumina, the experimental thermoporometric analysis of which is
shown by the continuous linc in Fig. 8. The corresponding curves are in good
agrecment. They can agree even better, however, as is pointed out by the model
shown in Fig_ 8, carried out by adding another spherical distribution to the selected
model. o

This example shows that the assumption of a porous material by the association
of two types of pores gives good results, whereas the hypothesis of 2 porous material

= (a R: e " R"’)m
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with only cylindrical pores or only spherical pores would provide a small degree of
agreement, as is shown respectively in each case of simulation for y-alumina in Figs.
5and 6.

3.4. Application (o the study of sintering

It seemed worthwhile to apply the two methods of investigation discussed
above to a study of the influence of sintering on the pore shape of two mesoporous
materials: y-alumina and nickel filuoride, consolidated by the compression of their
powder. In cach case a benzene thermoporometry was carried out on untreated
samples first, then on the same but sintered at different temperatures. The results.
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TABLE 3
Material Ts Rpos It
: (K) (nm) ;
Alumina ¥ — 3.7 125
! - 1250 ] 1.5}
Nickel fluoride ~ 57 182
- N / 10 154
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relating to the extreme stages (untreated material, and material sintered at maximam
temperature) are dealt with:

In Table 3 which gives the temperature 7, of sintering, the pore radius R, ¢_s
corresponding to a 507 rate of transformation and the thermodynamic shape factor
connected with this radius.

-In Figs. 8-11 where the thermograms and the distributions deduced from
experiments and simulations are represented.

For both types of materials, it appears that sintering involves a widening of
the pore size and a change in their shape towards the cylindrical form.

‘This last observation can be deduced from the increase of the shape factor as
well as from the simulations. Indeed, in the selected models, an increase in the pro-
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portion of cylindrical pores can be observed during the whole grocess of sintering.

The change is not so clear for nickel fluoride as for y-alumina. This can be
related to the fact that in the case of untreated materials a greater proportion of
cylindrical pores can be observed 1o begin with in nickel fluoride as compared to

7-alumina.

CONCLUSION

The calorimetric procedure for determining the distribution of pore radii
recommended until recently required the use of calibration curves R (4T) and
W (AT) which differed with each condcnsate and were difficult to obtain. The
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procedure described in this paper does away with calibration curves, duc 1o the
use of theoretical relationships. This is an undeniable improvement, as it is more
accurate and makes it possible to use any condensate whase thermodynamic para-
melers c¢,, v, AS,, and 7, are known.

Because information concerning y,, is rare, a method of measuring it has been
suggested. It was applied to water and benzene but, using the same porous materials,
it could be applied more generally to any liquid able to condense. The accuracy of
the results can be improved by a morc accurate cvaluation of the thickness of the
layer which does not change state thanks to the use of other methods of investigation
{R.M_N._, adsorption calorimetry at low temperature, etc.).

The original purpose of thermoporometry—the determination of pore radius
distribution curves—has becn fulfifled again in the case of this new procedure,
which is made clear by the comparison of its scsults with those of the B.J.H. method.
Thermoporometry is simple to handle, it gives the real size of the cavities and it only
requires 2 hypothesis about the pore shape when it comes to evaluating the volume
of the layers which do not change state. Al these advantages are definitely an im-
provement over the conventionai methods.

The advantage goes even further in 50 far as it makes it possible to ascertain
the pore shape of the material:

(i) The thermodynamic shape factor makes it possible to show ta what cxtent
the pore shape differs with the cylindrical model often propounded in the literature.

(i) Simulation, as it is based on a porosity only cousisting of spheres and
cylinders, cnables one to determine at the same time the radius and the volume
of those two extreme types of pores. The development of a model of this type, by
means of successive approximations, leads to a unique result whose agreement with
the experimental results seems to be promising for the future of the method.

Thus thermoporometry appears as a2 method compliete in itself which makes
it possible to assess the porous material as a whole and to predict more accurately
its behaviour in response to different thermal or mechanical trecatments, together
with its possible uses as ultrafilters, adsorbents, catalysts, etc.
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